RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1996 Volume 60, Issue 5, Pages 19–26 (Mi im85)

This article is cited in 1 paper

Moduli of Abelian surfaces with a $(1,p^2)$ polarisation

V. A. Gritsenkoa, G. K. Sankaranb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b University of Cambridge

Abstract: The moduli space of abelian surfaces with a polarisation of type $(1,p^2)$ for $p$ a prime was studied by O'Grady in [7], where it is shown that a compactification of this moduli space is of general type if $p\geqslant 17$. We shall show that in fact this is true if $p\geqslant 11$. Our methods overlap with those of [7], but are in some important ways different. We borrow notation freely from that paper when discussing the geometry of the moduli space.

MSC: 14K10

Received: 27.02.1996

Language: English

DOI: 10.4213/im85


 English version:
Izvestiya: Mathematics, 1996, 60:5, 893–900

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025