RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2016 Volume 80, Issue 5, Pages 77–102 (Mi im8516)

This article is cited in 4 papers

Threefold extremal contractions of type (IIA). I

S. Moriab, Yu. G. Prokhorovcde

a Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
b Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
d Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
e National Research University "Higher School of Economics" (HSE), Moscow

Abstract: Let $(X,C)$ be a germ of a threefold $X$ with terminal singularities along an irreducible reduced complete curve $C$ with a contraction $f\colon(X,C)\to(Z,o)$ such that $C=f^{-1}(o)_{\mathrm{red}}$ and $-K_X$ is ample. Assume that $(X,C)$ contains a point of type $(\mathrm{IIA})$ and that a general member $H\in|\mathscr O_X|$ containing $C$ is normal. We classify such germs in terms of $H$.

Keywords: extremal contraction, threefold, extremal curve germ, terminal singularity, sheaf.

UDC: 512.76

MSC: 14J30, 14E30, 14E05

Received: 28.01.2016

Language: English

DOI: 10.4213/im8516


 English version:
Izvestiya: Mathematics, 2016, 80:5, 884–909

Bibliographic databases:
ArXiv: 1601.07671


© Steklov Math. Inst. of RAS, 2025