RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2018 Volume 82, Issue 1, Pages 65–96 (Mi im8521)

This article is cited in 11 papers

Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes

V. G. Kanoveiab, V. A. Lyubetskyac

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b Russian University of Transport
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We use a countable-support product of invariant Jensen's forcing notions to define a model of $\mathbf{ZFC}$ set theory in which the uniformization principle fails for some planar $\varPi_2^1$ set all of whose vertical cross-sections are countable sets and, more specifically, Vitali classes. We also define a submodel of that model, in which there exists a countable $\varPi_2^1$ sequence of Vitali classes $P_n$ whose union $\bigcup_nP_n$ is not a countable set. Of course, the axiom of choice fails in this submodel.

Keywords: uniformization, forcing, Vitali classes.

UDC: 510.225+510.223

MSC: 03E15, 03E35, 03E20

Received: 10.02.2016

DOI: 10.4213/im8521


 English version:
Izvestiya: Mathematics, 2018, 82:1, 61–90

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024