RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2017 Volume 81, Issue 2, Pages 129–160 (Mi im8542)

This article is cited in 3 papers

The phase-integral method in a problem of singular perturbation theory

S. A. Stepin, V. V. Fufaev

Lomonosov Moscow State University

Abstract: This paper is devoted to the development of the phase-integral method as applied to a boundary-value problem modelling the passage from discrete to continuous spectrum in the non-selfadjoint case. Our aim is to study the patterns and features of the asymptotic distribution of eigenvalues of the problem and to describe the topologically distinct types of spectrum configurations in the quasiclassical limit.

Keywords: phase integral, WKB-approximation, Bohr–Sommerfeld–Maslov quantization rule, quasiclassical asymptotics.

UDC: 517.9

MSC: 34E20, 34L20, 34M60, 41A60

Received: 10.03.2016
Revised: 04.10.2016

DOI: 10.4213/im8542


 English version:
Izvestiya: Mathematics, 2017, 81:2, 359–390

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025