RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2018 Volume 82, Issue 3, Pages 192–206 (Mi im8578)

This article is cited in 4 papers

Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma

E. I. Yurova Axelsson, A. Yu. Khrennikov

Linnaeus University, Växjö, Sweden

Abstract: In this paper we describe a new representation of $p$-adic functions, the so-called subcoordinate representation. The main feature of the subcoordinate representation of a $p$-adic function is that the values of the function $f$ are given in the canonical form of the representation of $p$-adic numbers. The function $f$ itself is determined by a tuple of $p$-valued functions from the set $\{0,1,\dots,p-1\}$ into itself and by the order in which these functions are used to determine the values of $f$. We also give formulae that enable one to pass from the subcoordinate representation of a $1$-Lipschitz function to its van der Put series representation. The effective use of the subcoordinate representation of $p$-adic functions is illustrated by a study of the feasibility of generalizing Hensel's lemma.

Keywords: $p$-adic numbers, Lipschitz functions, coordinate representation, van der Put series.

UDC: 512.625.5

MSC: 26E30, 11S82

Received: 31.05.2016
Revised: 09.11.2016

DOI: 10.4213/im8578


 English version:
Izvestiya: Mathematics, 2018, 82:3, 632–645

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024