RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2017 Volume 81, Issue 4, Pages 68–107 (Mi im8610)

This article is cited in 6 papers

Universal adic approximation, invariant measures and scaled entropy

A. M. Vershikabc, P. B. Zatitskiidec

a St. Petersburg State University, Department of Mathematics and Mechanics
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
d Ècole Normale Supérieure, Département de mathématiques et applications, Paris
e Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics

Abstract: We define an infinite graded graph of ordered pairs and a canonical action of the group $\mathbb{Z}$ (the adic action) and of the infinite sum of groups of order two $\mathcal{D}=\sum_1^{\infty} \mathbb{Z}/2\mathbb{Z}$ on the path space of the graph. It is proved that these actions are universal for both groups in the following sense: every ergodic action of these groups with invariant measure and binomial generator, multiplied by a special action (the ‘odometer’), is metrically isomorphic to the canonical adic action on the path space of the graph with a central measure. We consider a series of related problems.

Keywords: graph of ordered pairs, universal action, adic transformation, scaled entropy.

UDC: 517.518

MSC: Primary 37A35; Secondary 28D05, 37A05, 37A50, 60G99

Received: 02.10.2016

DOI: 10.4213/im8610


 English version:
Izvestiya: Mathematics, 2017, 81:4, 734–770

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025