RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 2, Pages 61–82 (Mi im8613)

This article is cited in 2 papers

Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions

A. A. Kalybaya, R. Oinarovb

a Университет КИМЭП, г. Алматы, Казахстан
b L. N. Gumilev Eurasian National University, Astana

Abstract: We consider weighted bounds for quasilinear integral operators of the form
$$ \mathcal{K}^+f(x)=\biggl(\int_{0}^{x}\biggl|w(t)\int_{t}^{x} K(s,t)f(s)\,ds\biggr|^{r}\,dt\biggr)^{{1}/{r}} $$
from $L_{p,v}$ to $L_{q,u}$ on the set on non-negative and non-negative monotone functions $f$, where $u$, $v$ and $w$ are weight functions. Under the assumption that $0<r<\infty$, we obtain necessary and sufficient conditions for the validity of these bounds on the set of non-negative functions for the values of the parameters satisfying the conditions $1\leqslant p\leqslant q<\infty$ and $0<q<p<\infty$, $p\geqslant 1$, and also on the cones of non-negative non-increasing and non-negative non-decreasing functions for $0<q<\infty$ and $1\leqslant p<\infty$. Here it is assumed only that $K{(\,\cdot\,,\cdot\,)}\geqslant 0$. However, the criteria we obtain involve the norm of a linear integral operator from $L_{p,v}$ to $L_{r,w}$ with kernel $K{(\,\cdot\,,\cdot\,)}$.

Keywords: integral operator, inequality of Hardy type, weight function, kernel, monotone function.

UDC: 517.51

MSC: 26D10, 47B38

Received: 07.10.2016
Revised: 25.03.2017

DOI: 10.4213/im8613


 English version:
Izvestiya: Mathematics, 2019, 83:2, 251–272

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025