RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1993 Volume 57, Issue 4, Pages 153–173 (Mi im863)

This article is cited in 12 papers

Algebraic cycles on a real algebraic GM-manifold and their applications

V. A. Krasnov


Abstract: For an algebraic cycle $Y\in A_k(X)$ on a real algebraic $\operatorname{GM}$-manifold $X$, the relationship between the homology classes $[Y(\mathbf C)]\in H_{2k}(X(\mathbf C),\mathbf Z)$ and $[Y(\mathbf R)]\in H_k(X(\mathbf R),\mathbf F_2)$ is studied. It is shown that similar relations hold for smooth cycles on a $\operatorname{GM}$-surface. The results are applied to prove congruences for the Euler characteristic of the set $X(\mathbf R)$.

UDC: 513.6+517.6

MSC: 14C15, 14C30, 14F25, 14F45, 14J40, 32J25

Received: 20.05.1991


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 43:1, 141–160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025