RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1993 Volume 57, Issue 3, Pages 92–151 (Mi im870)

This article is cited in 4 papers

On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule

M. V. Karasev, A. V. Pereskokov


Abstract: The method of isomonodromy deformations is used to prove connection formulas for the second Painleve transcendent, which is exponentially decreasing on one side of a turning point and has a Kuzmak–Luke–Whitham decomposition on the other. The phase advance turns out to be equal to $\pi/2$ ($\operatorname{mod}\pi$). These connection formulas lead to the determination of the asymptotics of the eigenvalues for the Sturm–Liouville equation with a cubic nonlinearity.

UDC: 517.946+517.958

MSC: Primary 34E20, 34E05; Secondary 34B24, 34A34, 34C15, 81S99

Received: 27.12.1991


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 42:3, 501–560

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025