RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 2, Pages 204–226 (Mi im8742)

This article is cited in 9 papers

Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs

I. I. Sharapudinovab

a Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences

Abstract: We consider systems of functions ${\varphi}_{r,n}(x)$ ($r=1,2,\dots$, $n=0,1,\dots$) that are Sobolev-orthonormal with respect to a scalar product of the form $\langle f,g\rangle= \sum_{\nu=0}^{r-1}f^{(\nu)}(a)g^{(\nu)}(a)+ \int_{a}^{b}f^{(r)}(x)g^{(r)}(x)\rho(x)\,dx$ and are generated by a given orthonormal system of functions $\varphi_{n}(x)$ ($n=0,1,\dots$). The Fourier series and sums with respect to the system $\varphi_{r,n}(x)$ ($r=1,2,\dots$, $n=0,1,\dots$) are shown to be a convenient and efficient tool for the approximate solution of the Cauchy problem for ordinary differential equations (ODEs).

Keywords: Sobolev-orthogonal systems, Cauchy problem for ODEs, systems generated by Haar functions, cosines or Chebyshev polynomials.

UDC: 517.538

MSC: 42C05, 65L05

Received: 29.11.2017
Revised: 09.10.2018

DOI: 10.4213/im8742


 English version:
Izvestiya: Mathematics, 2019, 83:2, 391–412

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024