RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 3, Pages 213–256 (Mi im8754)

This article is cited in 5 papers

On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci

S. G. Tankeev

Vladimir State University

Abstract: We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operator ${}^{\mathrm{c}}\Lambda$ of Hodge theory is true for the fibre product $X=X_1\times_CX_2\times_CX_3$ of complex elliptic surfaces $X_k\to C$ over a smooth projective curve $C$ provided that the discriminant loci $\{\delta\in C\mid \operatorname{Sing}(X_{k\delta})\neq \varnothing\}$ $(k=1,2,3)$ are pairwise disjoint.

Keywords: standard conjecture, elliptic surface, fibre product, resolution of indeterminacies, Clemens–Schmid sequence, Gysin map.

UDC: 512.7

MSC: 14C25, 14C30, 14J27, 14J35

Received: 24.12.2017
Revised: 28.06.2018

DOI: 10.4213/im8754


 English version:
Izvestiya: Mathematics, 2019, 83:3, 613–653

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025