RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 1, Pages 3–24 (Mi im8766)

This article is cited in 4 papers

Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank 4

N. V. Bogachevabc

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b Lomonosov Moscow State University
c Caucasus Mathematical Center, Adyghe State University, Maikop

Abstract: A hyperbolic lattice is said to be $(1{,}{\kern1pt}2)$-reflective if its automorphism group is generated by $1$- and $2$-reflections up to finite index. We prove that the fundamental polyhedron of a $\mathbb{Q}$-arithmetic cocompact reflection group in three-dimensional Lobachevsky space contains an edge with sufficiently small distance between its framing faces. Using this fact, we obtain a classification of $(1{,}{\kern1pt}2)$-reflective anisotropic hyperbolic lattices of rank $4$.

Keywords: reflective hyperbolic lattices, roots, reflection groups, fundamental polyhedra, Coxeter polyhedra.

UDC: 519.45+512.7+512.81

MSC: 11H55, 11E12, 20F55, 51F15

Received: 03.02.2018

DOI: 10.4213/im8766


 English version:
Izvestiya: Mathematics, 2019, 83:1, 1–19

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024