RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1993 Volume 57, Issue 2, Pages 113–124 (Mi im880)

This article is cited in 8 papers

On approximation by harmonic polynomials in the $C^1$-norm on compact sets in $\mathbf R^2$

P. V. Paramonov


Abstract: It is proved that for an arbitrary compact set $X$ in $\mathbf R^2$ the following conditions are equivalent:
1) for every function $f\in C^1(\mathbf R^2)$, harmonic on $X^0$, and for any $\varepsilon>0$ a harmonic polynomial $p$ can be found such that
$$ \|f-p\|_X<\varepsilon,\qquad \|\nabla(f-p)\|_X<\varepsilon; $$
2) the set $\mathbf R^2\setminus X$ is connected

UDC: 517.5

MSC: Primary 41A10, 41A63; Secondary 31A05

Received: 22.10.1992


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 42:2, 321–331

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024