RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 5, Pages 3–26 (Mi im8805)

This article is cited in 10 papers

Conformally invariant inequalities in domains in Euclidean space

F. G. Avkhadiev

Kazan (Volga Region) Federal University

Abstract: We study conformally invariant integral inequalities for real-valued functions defined on domains $\Omega$ in $n$-dimensional Euclidean space. The domains considered are of hyperbolic type, that is, they admit a hyperbolic radius $R=R(x, \Omega)$ satisfying the Liouville non-linear differential equation and vanishing on the boundary of the domain. We prove several inequalities which hold for all smooth compactly supported functions $u$ defined on a given domain of hyperbolic type. Here are two of them:
\begin{gather*} \int|\nabla u|^2R^{2-n}\, dx \geqslant n (n-2)\int|u|^2R^{-n}\, dx, \\ \int|(\nabla u, \nabla R)|^p R^{p-s}\, dx\geqslant \frac{2^pn^p}{p^p}\int|u|^pR^{-s}\, dx, \end{gather*}
where $n\geqslant 2$, $1\leqslant p< \infty$ and $1+n/2 \leqslant s <\infty$. We also study the relations between Euclidean and hyperbolic characteristics of domains.

Keywords: Hardy-type inequality, hyperbolic radius, Liouville equation, Poincaré metric.

UDC: 517.518.23+517.956.2+514.13

MSC: Primary 26E10; Secondary 46E35, 53A30

Received: 03.05.2018
Revised: 15.09.2018

DOI: 10.4213/im8805


 English version:
Izvestiya: Mathematics, 2019, 83:5, 909–931

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024