RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 4, Pages 86–99 (Mi im8823)

This article is cited in 3 papers

On the nonsymplectic involutions of the Hilbert square of a K3 surface

S. Boissiièrea, A. Cattaneob, D. G. Markushevichc, A. Sartia

a Université de Poitiers, Laboratoire de Mathématiques et Applications, France
b Institut Camille Jordan, Université Claude Bernard Lyon 1, France
c Université de Lille, Laboratoire Paul Painlevé, France

Abstract: We investigate the interplay between the moduli spaces of ample $\langle 2\rangle$-polarized IHS manifolds of type $\mathrm{K3}^{[2]}$ and of IHS manifolds of type $\mathrm{K3}^{[2]}$ with a non-symplectic involution with invariant lattice of rank one. In particular, we describe geometrically some new involutions of the Hilbert square of a K3 surface whose existence was proven in a previous paper of Boissière, Cattaneo, Nieper-Wisskirchen, and Sarti.

Keywords: irreducible holomorphic symplectic manifolds, non-symplectic automorphisms, ample cone.

UDC: 512.721+512.774.4+512.76+515.177.4

MSC: Primary 14C05; Secondary 14J50, 14J28

Received: 08.06.2018
Revised: 22.10.2018

DOI: 10.4213/im8823


 English version:
Izvestiya: Mathematics, 2019, 83:4, 731–742

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025