RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 5, Pages 211–232 (Mi im8895)

This article is cited in 4 papers

On the standard conjecture for a $3$-dimensional variety fibred by curves with a non-injective Kodaira–Spencer map

S. G. Tankeev

Vladimir State University

Abstract: We prove that the Grothendieck standard conjecture of Lefschetz type holds for a complex projective 3-dimensional variety fibred by curves (possibly with degeneracies) over a smooth projective surface provided that the endomorphism ring of the Jacobian variety of some smooth fibre coincides with the ring of integers and the corresponding Kodaira–Spencer map has rank $1$ on some non-empty open subset of the surface. When the generic fibre of the structure morphism is of genus $2$, the condition on the endomorphisms of the Jacobian may be omitted.

Keywords: Grothendieck standard conjecture of Lefschetz type, Kodaira–Spencer map, Jacobian variety.

UDC: 512.7

MSC: 14C25, 14F25, 14J30

Received: 14.01.2019
Revised: 07.05.2019

DOI: 10.4213/im8895


 English version:
Izvestiya: Mathematics, 2020, 84:5, 1016–1035

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024