RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1996 Volume 60, Issue 5, Pages 111–156 (Mi im89)

This article is cited in 2 papers

Methods of approximate reconstruction of functions defined on chaotic lattices

O. V. Matveev


Abstract: In this article we consider methods of reconstructing functions of $n$ variables from their values at the points of a chaotic lattice providing an error of the best order in the approximation of functions $f$ and their derivatives of order $l$ in $L_q(\Omega)$ in the class $\mathscr W=\{f\in W_p^k(\Omega):\|D^kf\|_{L_p(\Omega )}\leqslant 1\}$ and classes of $h$-lattices us well as in $\mathscr W$ for a fixed lattice. We obtain methods of interpolation by means of smooth piecewise polynomial functions having the specified properties. The order of computational complexity is estimated for these methods.

MSC: 41A10, 41A15, 41A05

Received: 14.06.1994

DOI: 10.4213/im89


 English version:
Izvestiya: Mathematics, 1996, 60:5, 985–1025

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024