RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 6, Pages 3–62 (Mi im8927)

This article is cited in 6 papers

Massey products, toric topology and combinatorics of polytopes

V. M. Buchstabera, I. Yu. Limonchenkob

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b National Research University "Higher School of Economics", Moscow

Abstract: In this paper we introduce a direct family of simple polytopes $P^{0}\,{\subset}\, P^{1}\,{\subset}{\kern1pt}{\cdots}$ such that for any $2\,{\leq}\,k\,{\leq}\,n$ there are non-trivial strictly defined Massey products of order $k$ in the cohomology rings of their moment-angle manifolds $\mathcal Z_{P^n}$. We prove that the direct sequence of manifolds $*\subset S^{3}\hookrightarrow\dots\hookrightarrow\mathcal Z_{P^n}\hookrightarrow\mathcal Z_{P^{n+1}}\,{\hookrightarrow}\,{\cdots}$ has the following properties: every manifold $\mathcal Z_{P^n}$ is a retract of $\mathcal Z_{P^{n+1}}$, and one has inverse sequences in cohomology (over $n$ and $k$, where $k\to\infty$ as $n\to\infty$) of the Massey products constructed. As an application we get that there are non-trivial differentials $d_k$, for arbitrarily large $k$ as $n\to\infty$, in the Eilenberg–Moore spectral sequence connecting the rings $H^*(\Omega X)$ and $H^*(X)$ with coefficients in a field, where $X=\mathcal Z_{P^n}$.

Keywords: polyhedral product, moment-angle manifold, Massey product, Lusternik–Schnirelmann category, polytope family, flag polytope, generating series, nestohedron, graph-associahedron.

UDC: 515.143

MSC: Primary 13F55, 14M25, 55S30; Secondary 52B11

Received: 24.04.2019

DOI: 10.4213/im8927


 English version:
Izvestiya: Mathematics, 2019, 83:6, 1081–1136

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025