RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 5, Pages 197–210 (Mi im8930)

This article is cited in 3 papers

Isotopes of alternative algebras of characteristic different from $3$

S. V. Pchelintsevab

a Financial University under the Government of the Russian Federation, Moscow
b Moscow Center for Fundamental and Applied Mathematics

Abstract: We study homotopes of alternative algebras over an algebraically closed field of characteristic different from $3$. We prove an analogue of Albert's theorem on isotopes of associative algebras: in the class of finite-dimensional unital alternative algebras every isotopy is an isomorphism. We also prove that every $(a,b)$-homotope of a unital alternative algebra preserves the identities of the original algebra. We also obtain results on the structure of isotopes of various simple algebras, in particular, Cayley–Dixon algebras.

Keywords: homotope, isotope, identity, Cayley–Dixon algebra, alternative algebra.

UDC: 512.554

MSC: 17D05

Received: 07.05.2019
Revised: 03.09.2019

DOI: 10.4213/im8930


 English version:
Izvestiya: Mathematics, 2020, 84:5, 1002–1015

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025