RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 6, Pages 131–164 (Mi im8970)

On the group of spheromorphisms of a homogeneous non-locally finite tree

Yu. A. Neretinabcd

a Wolfgang Pauli Institute, Faculty of Mathematics, University of Vienna, Vienna, Austria
b State Scientific Center of the Russian Federation - Institute for Theoretical and Experimental Physics, Moscow
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow

Abstract: We consider a tree $\mathbb{T}$ all whose vertices have countable valency. Its boundary is the Baire space $\mathbb{B}\simeq\mathbb{N}^\mathbb{N}$ and the set of irrational numbers $\mathbb{R}\setminus\mathbb{Q}$ is identified with $\mathbb{B}$ by continued fraction expansions. Removing $k$ edges from $\mathbb{T}$, we get a forest consisting of copies of $\mathbb{T}$. A spheromorphism (or hierarchomorphism) of $\mathbb{T}$ is an isomorphism of two such subforests regarded as a transformation of $\mathbb{T}$ or $\mathbb{B}$. We denote the group of all spheromorphisms by $\operatorname{Hier}(\mathbb{T})$. We show that the correspondence $\mathbb{R}\setminus \mathbb{Q}\simeq \mathbb{B}$ sends the Thompson group realized by piecewise $\mathrm{PSL}_2(\mathbb{Z})$-transformations to a subgroup of $\operatorname{Hier}(\mathbb{T})$. We construct some unitary representations of $\operatorname{Hier}(\mathbb{T})$, show that the group $\operatorname{Aut}(\mathbb{T})$ of automorphisms is spherical in $\operatorname{Hier}(\mathbb{T})$ and describe the train (enveloping category) of $\operatorname{Hier}(\mathbb{T})$.

Keywords: Thompson group, continued fraction, Baire space, representation of categories, Bruhat–Tits tree.

UDC: 512.546.4+515.122.4

MSC: 20E08, 43A90, 37E25, 20C32, 22D10

Received: 23.09.2019
Revised: 22.01.2020

DOI: 10.4213/im8970


 English version:
Izvestiya: Mathematics, 2020, 84:6, 1161–1191

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024