RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 6, Pages 23–72 (Mi im8974)

This article is cited in 4 papers

Geometric estimates of solutions of quasilinear elliptic inequalities

A. A. Kon'kov

Lomonosov Moscow State University

Abstract: Suppose that $p>1$ and $\alpha$ are real numbers with $p-1 \leqslant \alpha \leqslant p$. Let $\Omega$ be a non-empty open subset of $\mathbb{R}^n$, $n \geqslant 2$. We consider the inequality
$$ \operatorname{div} A (x, D u)+b (x) |D u|^\alpha\geqslant 0, $$
where $D=(\partial/\partial x_1, \partial/\partial x_2, \dots, \partial/\partial x_n)$ is the gradient operator, $A\colon \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ and $b\colon \Omega \to [0, \infty)$ are certain functions and
$$ C_1|\xi|^p\leqslant\xi A(x, \xi),\quad |A (x, \xi)|\leqslant C_2|\xi|^{p-1},\qquad C_1, C_2=\mathrm{const}>0, \quad p>1, $$
for almost all $x \in \Omega$ and all $\xi \in \mathbb{R}^n$. We obtain estimates for solutions of this inequality using the geometry of $\Omega$. In particular, these estimates yield regularity conditions for boundary points.

Keywords: non-linear operators, elliptic inequalities, boundary regularity conditions.

UDC: 517.91

MSC: 5J15, 35J60, 35J61, 35J62, 35J92

Received: 01.10.2019

DOI: 10.4213/im8974


 English version:
Izvestiya: Mathematics, 2020, 84:6, 1056–1104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025