This article is cited in
4 papers
Geometric estimates of solutions of quasilinear elliptic inequalities
A. A. Kon'kov Lomonosov Moscow State University
Abstract:
Suppose that
$p>1$ and
$\alpha$ are real numbers with
$p-1 \leqslant \alpha \leqslant p$. Let
$\Omega$ be a non-empty
open subset of
$\mathbb{R}^n$,
$n \geqslant 2$. We consider the inequality
$$
\operatorname{div} A (x, D u)+b (x) |D u|^\alpha\geqslant 0,
$$
where $D=(\partial/\partial x_1, \partial/\partial x_2, \dots, \partial/\partial x_n)$ is the gradient operator,
$A\colon \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ and
$b\colon \Omega \to [0, \infty)$ are certain functions and
$$
C_1|\xi|^p\leqslant\xi A(x, \xi),\quad |A (x, \xi)|\leqslant C_2|\xi|^{p-1},\qquad C_1, C_2=\mathrm{const}>0, \quad p>1,
$$
for almost all
$x \in \Omega$ and all
$\xi \in \mathbb{R}^n$. We obtain estimates for solutions of this inequality using
the geometry of
$\Omega$. In particular, these estimates yield regularity conditions for boundary points.
Keywords:
non-linear operators, elliptic inequalities, boundary regularity conditions.
UDC:
517.91
MSC: 5J15,
35J60,
35J61,
35J62,
35J92 Received: 01.10.2019
DOI:
10.4213/im8974