RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 6, Pages 3–22 (Mi im8976)

This article is cited in 2 papers

Complete description of the Lyapunov spectra of continuous families of linear differential systems with unbounded coefficients

V. V. Bykov

Lomonosov Moscow State University

Abstract: For every positive integer $n$ and every metric space $M$ we consider the class $\widetilde{\mathcal{U}}^n(M)$ of all parametric families $\dot x = A(t, \mu)x$, where $x\in\mathbb{R}^n$, $t\geqslant 0$, $\mu\in M$, of linear differential systems whose coefficients are piecewise continuous and, generally speaking, unbounded on the time semi-axis for every fixed value of the parameter $\mu$ such that if a sequence $(\mu_k)$ converges to $\mu_0$ in the space of parameters, then the sequence $(A(\,{\cdot}\,,\mu_k))$\linebreak converges uniformly on the semi-axis to the matrix $A(\,{\cdot}\,,\mu_0)$. For the families in $\widetilde{\mathcal{U}}^n(M)$, we obtain a complete description of individual Lyapunov exponents and their spectra as functions of the parameter.

Keywords: linear differential system, Lyapunov exponents, infinitesimal perturbations, Baire classes.

UDC: 517.926.4

MSC: 34D08

Received: 03.10.2019

DOI: 10.4213/im8976


 English version:
Izvestiya: Mathematics, 2020, 84:6, 1037–1055

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024