RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 3, Pages 239–260 (Mi im8980)

This article is cited in 1 paper

Immersions of open Riemann surfaces into the Riemann sphere

F. Forstneričab

a Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
b Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

Abstract: In this paper we show that the space of holomorphic immersions from any given open Riemann surface $M$ into the Riemann sphere $\mathbb{CP}^1$ is weakly homotopy equivalent to the space of continuous maps from $M$ to the complement of the zero section in the tangent bundle of $\mathbb{CP}^1$. It follows in particular that this space has $2^k$ path components, where $k$ is the number of generators of the first homology group $H_1(M,\mathbb{Z})=\mathbb{Z}^k$. We also prove a parametric version of the Mergelyan approximation theorem for maps from Riemann surfaces to an arbitrary complex manifold, a result used in the proof of our main theorem.

Keywords: Riemann surface, holomorphic immersion, meromorphic function, $\mathrm{h}$-principle, weak homotopy equivalence.

UDC: 517.545+517.551

MSC: 32H02, 58D10, 57R42

Received: 14.10.2019
Revised: 16.02.2020

DOI: 10.4213/im8980


 English version:
Izvestiya: Mathematics, 2021, 85:3, 562–581

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025