RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 4, Pages 169–186 (Mi im8982)

This article is cited in 9 papers

Proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing a field

I. A. Panin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: Let $R$ be a regular local ring containing a field. Let $\mathbf{G}$ be a reductive group scheme over $R$. We prove that a principal $\mathbf{G}$-bundle over $R$ is trivial if it is trivial over the field of fractions of $R$. In other words, if $K$ is the field of fractions of $R$, then the map
$$ H^1_{\mathrm{et}}(R,\mathbf{G})\to H^1_{\mathrm{et}}(K,\mathbf{G}) $$
of the non-Abelian cohomology pointed sets induced by the inclusion of $R$ in $K$ has trivial kernel. This result was proved in [1] for regular local rings $R$ containing an infinite field.

Keywords: reductive group schemes, principal bundles, Grothendieck–Serre conjecture.

UDC: 512.74+512.723

MSC: 14L10, 20G10, 20G35

Received: 18.10.2019
Revised: 31.01.2020

DOI: 10.4213/im8982


 English version:
Izvestiya: Mathematics, 2020, 84:4, 780–795

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024