RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 2, Pages 60–72 (Mi im8985)

This article is cited in 4 papers

General Fourier coefficients and convergence almost everywhere

L. D. Gogoladze, G. Cagareishvili

Tbilisi Ivane Javakhishvili State University

Abstract: We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system $(\varphi_n)$ in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men'shov–Rademacher theorem. We also prove a theorem saying that every system $(\varphi_n)$ contains a subsystem $(\varphi_{n_k})$ with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].

Keywords: orthonormal system, Fourier coefficients, functions of bounded variation, Banach space.

UDC: 517.521

MSC: 42A16

Received: 05.11.2019
Revised: 25.04.2020

DOI: 10.4213/im8985


 English version:
Izvestiya: Mathematics, 2021, 85:2, 228–240

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024