RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 2, Pages 95–112 (Mi im9000)

This article is cited in 2 papers

Positive solutions of superlinear elliptic problems with discontinuous non-linearities

V. N. Pavlenkoa, D. K. Potapovb

a Chelyabinsk State University
b Saint Petersburg State University

Abstract: We consider an elliptic boundary-value problem with a homogeneous Dirichlet boundary condition, a parameter and a discontinuous non-linearity. The positive parameter appears as a multiplicative term in the non-linearity, and the problem has a zero solution for any value of the parameter. The non-linearity has superlinear growth at infinity. We prove the existence of positive solutions by a topological method.

Keywords: superlinear elliptic problem, parameter, discontinuous non-linearity, positive solution, topological method.

UDC: 517.95

MSC: 35J61, 35J25, 35B09, 35A01

Received: 14.12.2019
Revised: 14.07.2020

DOI: 10.4213/im9000


 English version:
Izvestiya: Mathematics, 2021, 85:2, 262–278

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024