RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 1, Pages 154–186 (Mi im9005)

This article is cited in 4 papers

On the standard conjecture for projective compactifications of Néron models of $3$-dimensional Abelian varieties

S. G. Tankeev

Vladimir State University

Abstract: We prove that the Grothendieck standard conjecture of Lefschetz type holds for a smooth complex projective $4$-dimensional variety $X$ fibred by Abelian varieties (possibly, with degeneracies) over a smooth projective curve if the endomorphism ring $\operatorname{End}_{\overline{\kappa(\eta)}} (X_\eta\otimes_{\kappa(\eta)}\overline{\kappa(\eta)})$ of the generic geometric fibre is not an order of an imaginary quadratic field. This condition holds automatically in the cases when the reduction of the generic scheme fibre $X_\eta$ at some place of the curve is semistable in the sense of Grothendieck and has odd toric rank or the generic geometric fibre is not a simple Abelian variety.

Keywords: standard conjecture, Abelian variety, Néron minimal model, toric rank.

UDC: 512.7

MSC: 14C25, 14F25, 14J30

Received: 28.12.2019

DOI: 10.4213/im9005


 English version:
Izvestiya: Mathematics, 2021, 85:1, 145–175

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025