RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 3, Pages 178–190 (Mi im9017)

This article is cited in 1 paper

Quasi-polynomial mappings with constant Jacobian

S. I. Pinchuk

Department of Mathematics, Indiana University, Bloomington, IN, USA

Abstract: The famous Jacobian conjecture (JC) remains open even for dimension $2$. In this paper we study it by extending the class of polynomial mappings to quasi-polynomial ones. We show that any possible non-invertible polynomial mapping with non-zero constant Jacobian can be transformed into a special reduced form by a sequence of elementary transformations.

Keywords: Jacobian conjecture, Newton polynomial, Abhyankar's equation, quasi-polynomial mappings.

UDC: 512.76+512.774+514.763.8

MSC: 14R15, 13R20

Received: 03.02.2020
Revised: 14.07.2020

DOI: 10.4213/im9017


 English version:
Izvestiya: Mathematics, 2021, 85:3, 506–517

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025