RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 3, Pages 261–283 (Mi im9041)

Nevanlinna factorization in weighted classes of analytic functions of variable smoothness

N. A. Shirokovab

a Saint Petersburg State University
b Saint Petersburg Electrotechnical University "LETI"

Abstract: We define a new class of functions of variable smoothness that are analytic in the unit disc and continuous in the closed disc. We construct the theory of the Nevanlinna outer-inner factorization, taking into account the influence of the inner factor on the outer function, for functions of the new class.

Keywords: outer-inner factorization, Lebesgue spaces with variable exponent, Muckenhoupt condition.

UDC: 517.547

MSC: Primary 46E10; Secondary 30H05

Received: 25.03.2020

DOI: 10.4213/im9041


 English version:
Izvestiya: Mathematics, 2021, 85:3, 582–604

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025