RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 3, Pages 138–153 (Mi im9048)

This article is cited in 5 papers

Explicit minimizers of some non-local anisotropic energies: a short proof

J. E. Mateuab, M. G. Morac, L. Rondid, L. Scardiae, J. Verderaab

a Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
b Barcelona Graduate School of Mathematics, Barcelona, Catalonia, Spain
c Dipartimento di Matematica, Università di Pavia, Italy
d Dipartimento di Matematica, Università di Milano, Italy
e Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom

Abstract: In this paper we consider non-local energies defined on probability measures in the plane, given by a convolution interaction term plus a quadratic confinement. The interaction kernel is $-\log|z|+\alpha x^2/|z|^2$, $z=x+iy$, with $-1<\alpha<1$. This kernel is anisotropic except for the Coulomb case $\alpha=0$. We present a short compact proof of the known surprising fact that the unique minimizer of the energy is the normalized characteristic function of the domain enclosed by an ellipse with horizontal semi-axis $\sqrt{1-\alpha}$ and vertical semi-axis $\sqrt{1+\alpha}$. Letting $\alpha \to 1^-$, we find that the semicircle law on the vertical axis is the unique minimizer of the corresponding energy, a result related to interacting dislocations, and previously obtained by some of the authors. We devote the first sections of this paper to presenting some well-known background material in the simplest way possible, so that readers unfamiliar with the subject find the proofs accessible.

Keywords: non-local interaction, potential theory, maximum principle, Plemelj formula.

UDC: 517.4+517.5

MSC: Primary 31A15; Secondary 49K20

Received: 31.03.2020
Revised: 10.08.2020

DOI: 10.4213/im9048


 English version:
Izvestiya: Mathematics, 2021, 85:3, 468–482

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024