RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 3, Pages 5–12 (Mi im9051)

This article is cited in 1 paper

Simple solutions of the Burgers and Hopf equations

V. K. Beloshapkaab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics

Abstract: We describe all solutions of the Burgers equation of analytic complexity not exceeding $1$. It turns out that all such solutions fall into four families of dimensions not exceeding $3$ that are represented by elementary functions. An example of a family of solutions of the Burgers equation of complexity $2$ is given. A similar problem is also solved for the Hopf equation. It turns out that all solutions to the Hopf equation of complexity $1$ form a two-parameter family of fractional-linear functions which coincides with one of the families of solutions of the Burgers equation.

Keywords: analytic complexity, special functions, analytic spectrum.

UDC: 517.55+517.923+514.74

MSC: 35A30 (35Q35, 58H05)

Received: 13.04.2020
Revised: 29.06.2020

DOI: 10.4213/im9051


 English version:
Izvestiya: Mathematics, 2021, 85:3, 343–350

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024