Abstract:
We describe the symmetry group of a multidimensional continued fraction. As a multidimensional generalization of continued fractions we consider Klein polyhedra. We distinguish two types of symmetries: Dirichlet symmetries, which correspond to the multiplication by units of the respective extension of $\mathbb{Q}$, and so-called palindromic symmetries. The main result is a criterion for a two-dimensional continued fraction to have palindromic symmetries, which is analogous to the well-known criterion for the continued fraction of a quadratic irrationality to have a symmetric period.
Keywords:multidimensional continued fractions, Klein polyhedra, Dirichlet's unit theorem.