RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 5, Pages 58–109 (Mi im9082)

This article is cited in 9 papers

Functional and analytic properties of a class of mappings in quasi-conformal analysis

S. K. Vodopyanov, A. O. Tomilov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We define a two-index scale $\mathcal Q_{q,p}$, $n-1<q\leq p<\infty$, of homeomorphisms of spatial domains in $\mathbb R^n$, the geometric description of which is determined by the control of the behaviour of the $q$-capacity of condensers in the target space in terms of the weighted $p$-capacity of condensers in the source space. We obtain an equivalent functional and analytic description of $\mathcal Q_{q,p}$ based on the properties of the composition operator (from weighted Sobolev spaces to non-weighted ones) induced by the inverses of the mappings in $\mathcal Q_{q,p}$.
When $q=p=n$, the class of mappings $\mathcal Q_{n,n}$ coincides with the set of so-called $Q$-homeomorphisms which have been studied extensively in the last 25 years.

Keywords: quasi-conformal analysis, Sobolev space, composition operator, capacity and modulus of a condenser.

UDC: 517.518+517.54

MSC: 30C65, 31B15, 46E35

Received: 29.06.2020
Revised: 04.10.2020

DOI: 10.4213/im9082


 English version:
Izvestiya: Mathematics, 2021, 85:5, 883–931

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025