RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 4, Pages 192–232 (Mi im9135)

This article is cited in 1 paper

On the standard conjecture for compactifications of Néron models of 4-dimensional Abelian varieties

S. G. Tankeev

Vladimir State University

Abstract: We prove that, after lifting to some finite ramified covering of a smooth projective curve $C$, the Grothendieck standard conjecture of Lefschetz type holds for the Künnemann compactification of the Néron minimal model of a 4-dimensional principally polarized Abelian variety over the field of rational functions on the curve $C$ provided that the endomorphism ring of the generic geometric fibre of the Néron model coincides with the ring of integers, all bad reductions are semi-stable and have toric rank 1 and, for any places $\delta,\delta'\in C$ of bad reductions, the Hodge conjecture on algebraic cycles holds for the product $A_\delta\times A_{\delta'}$ of the Abelian varieties $A_\delta,A_{\delta'}$ which are the quotients of the connected components of neutral elements in special fibres of the Néron minimal model modulo toric parts.

Keywords: standard conjecture, Abelian variety, Néron minimal model, Künnemann compactification, Hodge conjecture.

UDC: 512.7

MSC: 14C25, 14E30, 14F25, 11G10, 14J35

Received: 28.12.2020
Revised: 03.07.2021

DOI: 10.4213/im9135


 English version:
Izvestiya: Mathematics, 2022, 86:4, 797–835

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025