Abstract:
It is well known that the number of homomorphisms from a group $F$ to a group $G$ is divisible by the greatest common divisor of the order of $G$ and the exponent of $F/[F,F]$. We study the question of what can be said about the number of homomorphisms satisfying certain natural conditions like injectivity or surjectivity. A simple non-trivial consequence of our results is the fact that in any finite group the number of generating pairs $(x,y)$ such that $x^3=1=y^5$ is divisible by the greatest common divisor of fifteen and the order of the group $[G,G]\cdot\{g^{15}\mid g\in G\}$.
Keywords:number of homomorphisms, equations in groups, Frobenius' theorem, Solomon's theorem.