RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 4, Pages 175–191 (Mi im9151)

This article is cited in 1 paper

An extended form of the Grothendieck–Serre conjecture

I. A. Panin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: Let $R$ be a regular semi-local integral domain containing a field, $K$ the fraction field of $R$, and $\mu\colon \mathbf{G} \to \mathbf{T}$ an $R$-group scheme morphism between reductive $R$-group schemes which is smooth as a scheme morphism. Suppose that $\mathbf{T}$ is an $R$-torus. Then the map $\mathbf{T}(R)/ \mu(\mathbf{G}(R)) \to \mathbf{T}(K)/ \mu(\mathbf{G}(K))$ is injective and a purity theorem holds. These and other results can be derived from an extended form of the Grothendieck–Serre conjecture proven in the present paper for any such ring $R$.

Keywords: reductive group schemes, principal bundles, Grothendieck–Serre conjecture, purity theorem.

UDC: 512.74+512.723

MSC: 14L15, 20G10

Received: 08.02.2021
Revised: 15.07.2021

DOI: 10.4213/im9151


 English version:
Izvestiya: Mathematics, 2022, 86:4, 782–796

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025