RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 4, Pages 175–191 (Mi im9151)

An extended form of the Grothendieck–Serre conjecture

I. A. Panin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: Let $R$ be a regular semi-local integral domain containing a field, $K$ the fraction field of $R$, and $\mu\colon \mathbf{G} \to \mathbf{T}$ an $R$-group scheme morphism between reductive $R$-group schemes which is smooth as a scheme morphism. Suppose that $\mathbf{T}$ is an $R$-torus. Then the map $\mathbf{T}(R)/ \mu(\mathbf{G}(R)) \to \mathbf{T}(K)/ \mu(\mathbf{G}(K))$ is injective and a purity theorem holds. These and other results can be derived from an extended form of the Grothendieck–Serre conjecture proven in the present paper for any such ring $R$.

Keywords: reductive group schemes, principal bundles, Grothendieck–Serre conjecture, purity theorem.

UDC: 512.74+512.723

MSC: 14L15, 20G10

Received: 08.02.2021
Revised: 15.07.2021

DOI: 10.4213/im9151


 English version:
Izvestiya: Mathematics, 2022, 86:4, 782–796

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024