RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 6, Pages 47–78 (Mi im9163)

This article is cited in 6 papers

Strong convergence of attractors of reaction-diffusion system with rapidly oscillating terms in an orthotropic porous medium

K. A. Bekmaganbetovab, V. V. Chepyzhovc, G. A. Chechkinde

a Kazakhstan Branch of Lomonosov Moscow State University, Nur-Sultan
b Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
d Lomonosov Moscow State University
e Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa

Abstract: A system of reaction-diffusion equations in a perforated domain with rapidly oscillating terms in the equations and in the boundary conditions is considered. It is not assumed that the uniqueness theorem conditions are satisfied for the corresponding initial-boundary value problem. We have proved the strong convergence of the trajectory attractors of this system to the trajectory attractors of the homogenized reaction-diffusion system with a ‘strange term’ (potential).

Keywords: attractors, homogenization, reaction-diffusion systems, energy identity, nonlinear equations, weak convergence, strong convergence, perforated domain, rapidly oscillating terms, strange term.

UDC: 517.957+517.955.8

MSC: 35B40, 35B41, 35Q80

Received: 02.03.2021
Revised: 16.01.2022

DOI: 10.4213/im9163


 English version:
Izvestiya: Mathematics, 2022, 86:6, 1072–1101

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024