RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 6, Pages 143–160 (Mi im9175)

One class of quasilinear elliptic type equations with discontinuous nonlinearities

V. N. Pavlenkoa, D. K. Potapovb

a Chelyabinsk State University
b Saint Petersburg State University

Abstract: In a bounded domain $\Omega\subset \mathbb{R}^n$, a class of quasilinear elliptic type boundary problems with parameter and discontinuous nonlinearity is studied. This class of problems includes the H. J. Kuiper conductor heating problem in a homogeneous electric field. The topological method is applied to verify the existence of a continuum of generalized positive solutions from the Sobolev space $W_p^2(\Omega)$ ($p>n$) connecting $(0,0)$ with $\infty$ in the space $\mathbb R\times C^{1,\alpha}(\overline\Omega)$, $\alpha\in (0,(p-n)/p)$. A sufficient condition for semiregularity of generalized solutions of this problem is given. The constraints on the discontinuous nonlinearity are relaxed in comparison with those used by H. J. Kuiper and K. C. Chang.

Keywords: quasilinear elliptic type equation, parameter, discontinuous nonlinearity, continuum of positive solutions, semiregular solution, topological method.

UDC: 517.956.25

PACS: N/A

MSC: Primary 35J62; Secondary 35R05

Received: 18.04.2021
Revised: 07.02.2022

DOI: 10.4213/im9175


 English version:
Izvestiya: Mathematics, 2022, 86:6, 1162–1178

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024