RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 4, Pages 103–115 (Mi im9182)

Gelfand–Kirillov dimensions of simple modules over twisted group algebras $k \ast A$

Ashish Guptaa, Umamaheswaran Arunachalamb

a Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), India
b Harish-Chandra Research Institute, India

Abstract: For the $n$-dimensional multi-parameter quantum torus algebra $\Lambda_{\mathfrak q}$ over a field $k$ defined by a multiplicatively antisymmetric matrix $\mathfrak q = (q_{ij})$ we show that, in the case when the torsion-free rank of the subgroup of $k^\times$ generated by the $q_{ij}$ is large enough, there is a characteristic set of values (possibly with gaps) from $0$ to $n$ that can occur as the Gelfand–Kirillov dimensions of simple modules. The special case when $\mathrm{K}.\dim(\Lambda_{\mathfrak q}) = n - 1$ and $\Lambda_{\mathfrak q}$ is simple, studied in A. Gupta, $\mathrm{GK}$-dimensions of simple modules over $K[X^{\pm 1}, \sigma]$, Comm. Algebra, 41(7) (2013), 2593–2597, is considered without assuming the simplicity, and it is shown that a dichotomy still holds for the GK dimension of simple modules.

Keywords: Gelfand–Kirillov dimension, simple module, quantum torus, twisted group algebra, Krull dimension.

UDC: 512.552.6

MSC: 16S35

Received: 26.04.2021

DOI: 10.4213/im9182


 English version:
Izvestiya: Mathematics, 2022, 86:4, 715–726

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025