RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 1, Pages 3–32 (Mi im9246)

This article is cited in 3 papers

Framed motivic $\Gamma$-spaces

G. A. Garkushaa, I. A. Paninbc, P. Østværdc

a Department of Mathematics, Swansea University, United Kingdom
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
c Department of Mathematics, University of Oslo, Oslo, Norway
d Dipartimento di Matematica, Università degli Studi di Milano, Milano, Italy

Abstract: We combine several mini miracles to achieve an elementary understanding of infinite loop spaces and very effective spectra in the algebro-geometric setting of motivic homotopy theory. Our approach combines $\Gamma$-spaces and Voevodsky's framed correspondences into the concept of framed motivic $\Gamma$-spaces; these are continuous or enriched functors of two variables that take values in framed motivic spaces. We craft proofs of our main results by imposing further axioms on framed motivic $\Gamma$-spaces such as a Segal condition for simplicial Nisnevich sheaves, cancellation, $\mathbb{A}^1$- and $\sigma$-invariance, Nisnevich excision, Suslin contractibility, and grouplikeness. This adds to the discussion in the literature on coexisting points of view on the $\mathbb{A}^1$-homotopy theory of algebraic varieties.

Keywords: framed correspondences, $\Gamma$-spaces, motivic spaces, framed motivic $\Gamma$-spaces, connective and very effective motivic spectra, infinite motivic loop spaces.

UDC: 512.73+514.7+515.14

MSC: 14F42, 55N30, 55P42

Received: 11.07.2021
Revised: 19.11.2021

DOI: 10.4213/im9246


 English version:
Izvestiya: Mathematics, 2023, 87:1, 1–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024