RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 5, Pages 5–17 (Mi im9248)

This article is cited in 4 papers

Estimates for the integrals of derivatives of rational functions in multiply connected domains in the plane

A. D. Baranova, I. R. Kayumovb

a Saint Petersburg State University
b Kazan (Volga Region) Federal University

Abstract: We obtain estimates for the integrals of derivatives of rational functions in multiply connected domains in the plane. A sharp order of growth is found for the integral of the modulus of the derivative of a finite Blaschke product in the unit disc. We also extend the results of Dolzhenko about the integrals of the derivatives of rational functions to a wider class of domains, namely, to domains bounded by rectifiable curves without zero interior angles, and show the sharpness of the results obtained.

Keywords: rational function, conformal map, Blaschke product, Hardy space, John domain.

UDC: 517.54

MSC: 26D15, 39H10, 30J10, 35A23

Received: 21.07.2021

DOI: 10.4213/im9248


 English version:
Izvestiya: Mathematics, 2022, 86:5, 839–851

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024