RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 5, Pages 18–42 (Mi im9249)

This article is cited in 1 paper

Modification of Poincaré's construction and its application in $CR$-geometry of hypersurfaces in $\mathbf{C}^4$

V. K. Beloshapkaab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics

Abstract: The modified Poincaré construction (a generalization of Poincaré's homological operator) was earlier used to estimate the dimension of the local automorphism group for an arbitrary germ of a real-analytic hypersurface in $\mathbf{C}^3$. In the present paper we prove the following alternative. For every hypersurface in $\mathbf{C}^4$, this dimension is either infinite or does not exceed $24$. Moreover, $24$ occurs only for a non-degenerate hyperquadric (one of the two). If the hypersurface is $2$-nondegenerate (resp. $3$-non-degenerate) at a generic point, the bound can be improved to $17$ (resp. $20$).

Keywords: $CR$-manifold, automorphisms, model surfaces.

UDC: 517.55

MSC: 32V40, 32V05, 58K50

Received: 22.07.2021
Revised: 30.09.2021

DOI: 10.4213/im9249


 English version:
Izvestiya: Mathematics, 2022, 86:5, 852–875

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024