RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 6, Pages 161–186 (Mi im9263)

Uniqueness sets of positive measure for the trigonometric system

M. G. Plotnikovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics

Abstract: There exists a family $\mathcal{B}$ of one-to-one mappings $B \colon \mathbb{Z}\to\mathbb{Z}$ satisfying the condition $B(-n) \equiv -B(n)$ such that for each $B \in \mathcal{B}$ there exists a perfect uniqueness set of positive measure for the $B$-rearranged trigonometric system $\{\exp(iB(n)x)\}$. For a certain wider class of rearrangements of the trigonometric system, the strengthened assertion holds from the Stechkin–Ul'yanov conjecture.

Keywords: trigonometric system, Fourier series, sets of uniqueness, $V$-sets.

UDC: 517.518.43

MSC: 42A63

Received: 07.09.2021
Revised: 20.12.2021

DOI: 10.4213/im9263


 English version:
Izvestiya: Mathematics, 2022, 86:6, 1179–1203

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024