RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 5, Pages 197–208 (Mi im9265)

One advance in the proof of the conjecture on meromorphic solutions of Briot–Bouquet type equations

A. Ya. Yanchenko

National Research University "Moscow Power Engineering Institute"

Abstract: We study entire solutions (solutions which are entire functions) of differential equations of the form $P(y,y^{(n)})=0$, where $P$ is a polynomial with complex coefficients, $n$ is a natural number. We show that, under some constraints on $P$, all entire solutions of such equations are either polynomials, or functions of the form $e^{-L\beta z}Q(e^{\beta z})$, where $L$ is a nonnegative integer, $\beta$ is a complex number, and $Q$ is a polynomial with complex coefficients. This verifies the well-known A. E. Eremenko's conjecture on meromorphic solutions of autonomous Briot–Bouquet type equations for entire solutions in the nondegenerate case.

Keywords: algebraic differential equation, Briot–Bouquet type equation, entire function, meromorphic function.

UDC: 517.925

MSC: 34M05, 34M04

Received: 16.09.2021
Revised: 07.04.2022

DOI: 10.4213/im9265


 English version:
Izvestiya: Mathematics, 2022, 86:5, 1020–1030

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024