RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 5, Pages 169–196 (Mi im9270)

This article is cited in 1 paper

On the Karatsuba divisor problem

V. V. Iudelevich

Lomonosov Moscow State University

Abstract: We obtain an upper bound for the sum
$$\Phi_a(x) = \sum_{p\leqslant x}\frac{1}{\tau(p+a)},$$
where $\tau(n)$ is the divisor function, $a\geqslant 1$ is a fixed integer, and $p$ runs through primes up to $x$.

Keywords: divisor function, shifted primes.

UDC: 511.337

MSC: 11N36

Received: 02.10.2021

DOI: 10.4213/im9270


 English version:
Izvestiya: Mathematics, 2022, 86:5, 992–1019

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025