RUS
ENG
Full version
JOURNALS
// Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
// Archive
Izv. RAN. Ser. Mat.,
2022
Volume 86,
Issue 5,
Pages
169–196
(Mi im9270)
This article is cited in
1
paper
On the Karatsuba divisor problem
V. V. Iudelevich
Lomonosov Moscow State University
Abstract:
We obtain an upper bound for the sum
$$\Phi_a(x) = \sum_{p\leqslant x}\frac{1}{\tau(p+a)},$$
where
$\tau(n)$
is the divisor function,
$a\geqslant 1$
is a fixed integer, and
$p$
runs through primes up to
$x$
.
Keywords:
divisor function, shifted primes.
UDC:
511.337
MSC:
11N36
Received:
02.10.2021
DOI:
10.4213/im9270
Fulltext:
PDF file (590 kB)
References
Cited by
English version:
Izvestiya: Mathematics, 2022,
86
:5,
992–1019
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025