RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 6, Pages 35–48 (Mi im9303)

Algebraic-geometry approach to construction of semi-Hamiltonian systems of hydrodynamic type

E. V. Glukhovabc, O. I. Mokhovabc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c Moscow Center for Fundamental and Applied Mathematics

Abstract: In this paper, a class of semi-Hamiltonian diagonal systems of hydrodynamic type is constructed using algebraic-geometric methods. For such systems, hydrodynamic integrals and hydrodynamic symmetries are constructed from algebraic-geometric data. Besides, it is described what algebraic-geometric data distinguish in this class Hamiltonian diagonal systems with Hamiltonian structures defined by flat metrics (local Dubrovin–Novikov brackets) and metrics of constant curvature (nonlocal Mokhov–Ferapontov brackets).

Keywords: Semi-Hamiltonian system, hydrodynamic type system, algebraic-geometric data, diagonal curvature metric, Baker–Akhiezer function.

UDC: 512.7+514.7+517.957

MSC: 14H70, 53Bxx, 53A07, 37Kxx, 35Qxx

Received: 17.12.2021
Revised: 07.10.2022

DOI: 10.4213/im9303


 English version:
Izvestiya: Mathematics, 2023, 87:6, 1148–1160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024