RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 2, Pages 3–55 (Mi im9319)

A solution to the multidimensional additive homological equation

A. F. Bera, M. Borstb, S. Borstc, F. A. Sukochevd

a National University of Uzbekistan named after M. Ulugbek, Tashkent
b Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
c Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
d School of Mathematics and Statistics, University of New South Wales, Kensington, Australia

Abstract: We prove that, for a finite-dimensional real normed space $V$, every bounded mean zero function $f\in L_\infty([0,1];V)$ can be written in the form $f=g\circ T-g$ for some $g\in L_\infty([0,1];V)$ and some ergodic invertible measure preserving transformation $T$ of $[0,1]$. Our method moreover allows us to choose $g$, for any given $\varepsilon>0$, to be such that $\|g\|_\infty\leq (S_V+\varepsilon)\|f\|_\infty$, where $S_V$ is the Steinitz constant corresponding to $V$.

Keywords: additive homological equation, coboundary problem, Kwapień's theorem, Steinitz constant, measure preserving transformation.

UDC: 517.987.1

MSC: 28D05

Received: 25.01.2022
Revised: 03.06.2022

DOI: 10.4213/im9319


 English version:
Izvestiya: Mathematics, 2023, 87:2, 201–251

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025