RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 5, Pages 140–163 (Mi im9336)

On the positivity of direct image bundles

Zhi Lia, Xiangyu Zhoubc

a School of Science, Beijing University of Posts and Telecommunications, Beijing, China
b Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
c Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, China

Abstract: In the present paper, we obtain an equivalent relation between the log-plurisubharmonicity of the relative Bergman kernel, the Griffiths and Nakano positivity for the direct image with the natural $L^2$ metric, by finding a converse of Berndtsson's theorem on the direct image. A converse of Berndtsson's generalization of Kiselman minimal principle is also obtained.

Keywords: $L^2$-methods, plurisubharmonic functions, direct images, positive hermitian holomorphic vector bundles, minimal principles, relative Bergman kernel.

UDC: 517.550.7+517.553+517.554

MSC: 32D15, 32L15, 32A25, 32U05

Received: 22.03.2022
Revised: 17.04.2022

Language: English

DOI: 10.4213/im9336


 English version:
Izvestiya: Mathematics, 2023, 87:5, 987–1010

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025