RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 6, Pages 207–222 (Mi im9340)

This article is cited in 1 paper

On the coprimeness relation from the viewpoint of monadic second-order logic

S. O. Speranskia, F. N. Pakhomovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Ghent University

Abstract: Let $\mathfrak{C}$ denote the structure of the natural numbers with the coprimeness relation. We prove that for each non-zero natural number $n$, if a $\Pi^1_n$-set of natural numbers is closed under automorphisms of $\mathfrak{C}$, then it is definable in $\mathfrak{C}$ by a monadic $\Pi^1_n$-formula of the signature of $\mathfrak{C}$ having exactly $n$ set quantifiers. On the other hand, we observe that even a much weaker version of this property fails for certain expansions of $\mathfrak{C}$.

Keywords: coprimeness, monadic second-order logic, definability, weak arithmetics.

UDC: 510.6+510.8

MSC: 03F35, 03D55, 03D35

Received: 23.03.2022
Revised: 30.05.2022

DOI: 10.4213/im9340


 English version:
Izvestiya: Mathematics, 2022, 86:6, 1225–1239

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024