RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 3, Pages 184–205 (Mi im9374)

Special Bohr–Sommerfeld geometry: variations

N. A. Tyurinab

a Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Region
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: This work continues investigations of special Bohr–Sommerfeld geometry for compact symplectic manifolds. By using natural deformation parameters we circumvent the difficulties involved in the definition of moduli spaces of special Bohr–Sommerfeld cycles for compact simply connected algebraic varieties. As a byproduct, we present some ideas of how our constructions can be exploited in the studies of Weinstein structures and Eliashberg conjectures.

Keywords: algebraic variety, Lagrangian submanifold, Bohr–Sommerfeld condition, Weinstein structure, Eliashberg conjecture.

UDC: 512.7+514.7+514.8

MSC: 53D12, 53D37, 53D50

Received: 06.05.2022

DOI: 10.4213/im9374


 English version:
Izvestiya: Mathematics, 2023, 87:3, 595–615

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025